
PyTomGUI User guide

 1

PyTomGUI for processing of cryo-Electron
Tomograms

Gijs van der Schot & Friedrich Forster

V1.0 (June 2019)

1. Introduction
The aim of this tutorial is to introduce you to the computational workflow in cryo-electron
tomography (Cryo-ET). Cryo-ET is an imaging technique used to obtain high-resolution three-
dimensional images of biological objects such as macromolecules and cells in their near native
environment. Samples are tilted as they are imaged, resulting is a set of 2D images (tilt series),
that can be combined to form a three-dimensional (3D) reconstruction. In Cryo-ET samples
are immobilized in non-crystalline ice (imaged at temperatures below -150 °C) allowing them
to be imaged without dehydration or chemical fixation, processes which could disrupt or
distort biological structures.

Figure 1. Schematic of the electron tomography setup. The sample is tilted between -60° and +60°. The recorded
Tilt-series images are combined into a tomographic reconstruction. From: Eikos, Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45403034.

In the first step of the tutorial you will reconstruct several three-dimensional tomograms from
measured tilt series. Using quantitative measures such as Fourier Shell Correlation (FSC) the
resolution of a raw tomogram barely exceeds 50 Å – nevertheless, much higher resolution
information will be present in your tomograms, but difficult to distinguish from the
background – if you squint you tend to see quite some detail beyond this level. Larger
macromolecular complexes can be identified visually in tomograms.

The limit on the resolution of the tomographic reconstruction is due to the maximal dose the
sample tolerates. In order to extend the resolution, identical parts of the tomogram can be
averaged. This is called subtomogram averaging. Resolutions beyond 4 Å have been achieved

PyTomGUI User guide

 2

this way. In the second part of the tutorial you will select regions of interest within a
reconstructed tomogram, and you will align the sub-tomograms to obtain a higher resolution
structure of the object of interest.
*NOTES FOR OPERATION ON THE ANGSTROM CLUSTER @UU

In order for PytomGUI to work you will have to execute the following lines in the terminal that load the required
modules for the program.

module load openmpi/2.1.1

module load python3/3.7

module load lib64/append

module load pytom/dev/gui_beta

(optional for frame alignment and CTF determination)

module load imod/4.10.28

module load motioncor2/1.2.3

Start the gui by executing:

pytomGUI.py

2. Data transfer and Preprocessing

2.1. Data collection

In the GUI you will see a ‘’Stage Selection” panel on the left, with one active button Data
Transfer. Click this button.

In the connected frame on the right you see two tabs (Figure 2). “Individual Assessment”, and
“Batch Mode”. We will use Batch Mode to copy data to our project folder.

The data we want to collect is stored in /data/tutorials/Erice/data. These data
are four tiltseries that contributed to (Braunger, Pfeffer et al, Science 2018); the sample was
crude cell membrane extract from HEK293 cells, which primarily contain free ribosomes and
Endoplasmic Reticulum (ER) derived (ribosome-studded) vesicles. The data were recorded
using SerialEM on a K2 detector in counting mode as frames. The folder contains the recorded
frames for each tilt stored as tif files and a parameter file (from SerialEM data acquisition)
stored as an mdoc-file. Make sure you tick the box for the mdoc collection as well. This file is
not strictly required as long as the tilt angle, and unique prefix to the tilt series, are part of
the filename1.

1 Please do not use hyphens in your filename, and use ‘’_’’to delimit experimental parameters such a date, time,
and angle.

PyTomGUI User guide

 3

Figure 2. Data collection and Motion Correction. The left panel is the Stage, where Data Transfer is active. In the
main panel Batch mode for transferring and preprocessing a series of tomograms is chosen. After importing the
data using Collect Data, the frames can be motion corrected by checking the Do Motion Correction box.

2.2. Motion Correction

The input TIF files are composed of a series of frames for each tilt angle. In order to
compensate for beam induced motion of the sample, a series of frames are recorded in rapid
succession. The individual frames can be aligned during an initial preprocessing step called
motion correction. The PyTom-GUI uses Motioncor2 for motion correction [2]. For motion
correction one can supply additional files, like a gain reference file, which motioncor2 will use
for correcting the different probabilities of pixels to record a signal. You can select if you want
to align patches within the image, and whether you want to crop the images in Fourier space,
i.e., to downsample the images (for example from super-resolution to normal-resolution). In
the example, those options are not used.
*NOTE:

1) We will not use patches, nor binning or gain correction. If a file called gain_ref.dm4 is present in your
data folder, this can be used for gain correction.

3. Tomographic Reconstruction
3.1. Tomogram alignment

After successful data collection and motion correction, we are ready for the next step:
Tomographic reconstruction. First you need to enable the Tomographic Reconstruction stage
in the top menu, which then displays the Tomographic Reconstruction icon on the left panel
in color (Figure 3).

Click on the second button in the stage selection. Choose Select Tomograms and click on
Refresh Tab to update the table of prospect tomogram folders, in which the tilt images names
will be numbered with respect to their tilt angle. As we have downloaded three tilt series, we
only see three options. Select the four options and press Run. Now, tilt images will be squared
(for K2 images x and y dimensions differ slightly), extreme pixels will be corrected to the mean

PyTomGUI User guide

 4

value and the data are copied to separate folders named tomogram_000–
tomogram_003.

Figure 3. Start organizing your project. In the Select Tomograms menu you invoke a file structure, which
facilitates organizing your data.

After this step we can go to the Create Markerfile tab (Figure 4). The rough alignment of
individual tilt images is known from the experiment, but that is not sufficiently accurate for a
meaningful reconstruction. Thus, we need to correct for differences in rotation, translation,
and magnification between individual tilt images. For this we have added gold particles
(fiducials) to our sample. They form points of reference in each tilt image. The aim of this step
is to trace their relative position in each of the tilt images. You have to track at least five gold
particles that are present in each tilt image. The GUI will aid you in this process.

PyTomGUI User guide

 5

Figure 4. Fiducial selection windows. From the main menu, you choose the Tomographic Reconstruction stage
and the Create Markerfile tab therein. In there, Create Markerfile invokes the Settings menu. If you Load Tilt
Images the display window (here image sorted_30.mrc is displayed) opens. Clicking Manually Adjust Markers
opens the Select and Save Marker Sets (this name will be changed in the future to Edit Markers) window. The
Create Markerfile button of the display menu opens Select and Save Marker Sets windows (which indeed does
what its name says).

Select a tomogram name, set the binning factors and press Load Tilt Images. After this you
can select the accuracy of finding fiducials. Now press Find Fiducials. Consecutively press
Detect Frameshift to account for the frame shift between images. Press Index Fiducials to
create sets of fiducials automatically.

Upon clicking an empty display window and a Settings window will open. In the Settings
window you specify your tomogram (in Tomogram Name) as well as a number of parameters,
which are wherever possible filled out automatically (e.g., pixelsize from specification in mdoc
file). Recommended parameters for Binning Factor Reading and Finding Fiducials are 4 and 8
or 12, respectively. Accuracy level normal and Threshold cc_map 1.75 are good starting
values. When you click Load Tilt Images the images are read into memory and eventually
displayed.

It is handy to navigate through the display of the tilt images with hotkeys. Some hotkeys that
make it easier to navigate through tilt series: 1,2,3 display min, reference (typically 0 degrees)
and max tilt angles, respectively. You can shift between frames using the left and right arrow.

The marker detection and assignment bases on a semi-automated procedure. If you click Find
Fiducials candidates for gold beads are detected in the images. The found candidates should
correspond with beads you identify by eye, but it will inevitably also contain false positives
and false negatives. Testing different values for the Threshold_cc_map may enable detecting
more candidates (=lower threshold) or eliminating false positives (=higher threshold).

Based on the found markers the images can be brought into approximate register by clicking
Detect Frame Shifts.

Good approximations of the shifts from one projection to another are the basis for the next
step: Index Fiducials. Here, an algorithm seeks to assign indexes to markers throughout the
tiltseries. If there are many candidates, this step can take really long – so it is advisable to
limit the candidates in the reference projection (use hotkey ‘2’ in display window). You select
Manually adjust Markers, then you can focus on areas in the overview image with the left
mouse button and remove markers in the focus image with the right button (or add with left,
if required). If you are done adjusting your markers in the reference projection press Index
Fiducials.

When the indexing is finalized, colored numbers are displayed next to those markers that
could be indexed with confidence. Typically, for a number of markers this indexing will not
succeed for all tilt angles. In some rare cases, the indexing might even jump from one marker
to another. Both can be fixed by manual intervention. In the display window, the <(,) and >(.)
buttons allow you to navigate to previous / next image. After some preliminary adjustment
(e.g., adding/removing some markers in the reference projection using the Manually adjust
Markers menu) you can press Index Fiducials again to help with indexing – however, do not
be surprised if index numbers get changed. Occasionally, displaying the images as a loop using
the ‘l’ button can be useful.

PyTomGUI User guide

 6

Finally, you save the markers using the Create Markerfile menu. Choose those markers you
want to use for the tilt series alignment and Save Markers. The markers will be saved in a file
markerfile.em in the sorted folder of the respective tomogram. The coordinates have
only been determined coarsely in the binned images. You can refine these positions in the
unbinned images using a simple iterative algorithm by clicking Recenter Markers and finally
saving them again.
Note: If you do not want to use the fiducial localization from PyTomGUI you do not have to. In principle,
everything required for the PyTom workflow is a file that contains the (indexed) marker coordinates. The
underlying PyTom alignment functions also accept IMOD-generated wimp files instead of the pytom-generic
markerfile.em format. You can also load these marker coordinates into the PyTomGUI when you load a
WIMP markerfile in the Create Markerfile menu – PyTom also supports this format in addition to its native
markerfile.em format. Alternatively, you can also use matlab function av3_wimp2em.m for conversion.

3.2. Alignment

After the creation of a markerfile, one can apply the image transformations to the tilt images.
For the eventual high-resolution reconstructions, it is handy to generate the unbinned,
aligned tilt images, which are created in this step. To this end we activate the Alignment panel
and choose Batch Alignment to process all tomograms from the project. Clicking Refresh Tab
should show all available tomograms. Select the folder where your sorted tilt images are
([PROJECTDIR]/03_Tomographic_Reconstruction/tomogram_???/sorted
/), together with the respective metafile (located in the same folder). Make sure the binning
factor is set to 1, as we will later use the unbinned aligned tiltseries. Check the sbatch box to
submit the job to the queue or Run locally.

Figure 5. Transform alignment parameters to tilt series and write to disk.

3.3. CTF Correction

All TEM images are subject to convolution with a Contrast-Transfer Function (CTF).
Approximate deconvolution is ultimately required to get a faithful image of the specimen,
analogous to the typical workflow in single particle analysis. Peculiar about cryo-ET is that the
images have a strong defocus gradient due to the tilting of the specimen. This defocus
gradient has to be considered when determining the CTF parameters (defocus, astigmatism,
phase shift) and also in the CTF correction. The PyTomGUI employs CTFplotter from IMOD to

PyTomGUI User guide

 7

determine the CTF parameters (CTF Determination) and PyTom’s own procedure for CTF
Correction (phase flipping). For both, determination of CTF parameters and the actual CTF
correction the tilt angle is required. Hence, CTF correction is performed after the tilt series
alignment in the PyTomGUI workflow.

To start the CTF correction click the tab CTF Correction in the Tomographic Reconstruction
stage. We start with the determination of the CTF parameters by CTF plotter in the CTF
determination panel (Figure 6). The Folder Sorted & Aligned Tilt Images can be found in
[myProject]/03_Tomographic_Reconstruction/tomogram_xxx/alignme
nt/unweighted_unbinned_marker_x/. Enter the approximate Expected Defocus
value, which is important for good starting parameters for the search.

Figure 6. CTF determination. This panel sets the parameters for invoking CTFplotter (Figure 7).

Pressing Execute command opens CTF plotter (Figure 7). If agreement between data and
simulation is reasonable save the parameter table in the interface (best Fit each view
separately). This procedure has to be repeated for each tilt series.

PyTomGUI User guide

 8

Figure 7. CTF plotter invoked by Execute Command button in CTF determination. The purple curve is the
experimental radially averaged power spectrum and the green curve is the simulated one for the determined
defocus value. Clicking Store in Table in the right menu and Save to File stores the determined parameters. Check
Fit each view separately to get defocus of each micrograph rather than an averaged value and adjust Number of
views to fit and Step view range for example to 1. Make sure the Find Astigmatism box is checked – otherwise
the created fileformat will differ and create problems in the CTF correction.

After determination of the CTF parameters the actual CTF correction can be performed,
optionally in batch for a set of tomograms (Figure 8). In Fourier space phases are flipped in
specific areas, whereby the image is divided into small stripes to account for the defocus
gradient.

Figure 8. CTF correction. In Batch Correction mode the phases of the Fourier transforms of the tilt series images
are flipped according to the determined defocus values and taking into account of the defocus gradient in the
images of the tilted specimen. Field size denotes the tile size for the Fourier transform and Grid spacing
determines the width of stripes for the correction.

3.4. Reconstruction

After creation of the markerfile we compute overview reconstructions. PyTom supports two
types of 3D reconstruction: weighted backprojection (WBP) and Iterative Nonuniform Fourier
Reconstruction (INFR). WBP comes with two different weighting schemes: r*-weighting,
which linearly enhances weights with increasing frequency, and a scheme which accounts for
the precise angular sampling (going back to Harausz and van Heel). The former typically

PyTomGUI User guide

 9

results in over-amplification of high-frequency noise, which is reduced with the alternative
weighting scheme. The iterative INFR can achieve more accurate weighting and
reconstruction at the expense of computation time.

Under the Reconstruction tab you can choose Batch Reconstruction to reconstruct an entire
set of tomograms using specified parameters (Figure 9). This mode support WBP (precise
angular sampling) and INFR. The choice of the reference marker determines the coordinate
system for the final reconstruction, as also the case for tilt series alignment. We typically use
a Bin Factor of 8 for overview reconstructions. If sbatch is checked, the reconstruction will be
submitted to the slurm queue.

Figure 9. Reconstruction of tomograms. Make sure that Ref. Marker is the same as for the unbinned aligned
images created previously (in this case marker 0).

4. Particle Picking
The next step of the processing workflow is to determine the coordinates of potentially
interesting features, typically particles of a specific type. There are two options supported to
obtain these coordinates: particle coordinates can be determined manually or automatically
using template matching.

4.1. Manual Picking

Manual picking of particles is a good option to avoid possible bias due to external references.
A typical task can be to localize some particles manually, to create a first subtomogram
average from these particles, which may then serve as a reference for further exhaustive
searching of tomograms and again subtomogram averaging and even classification.

To start manual picking you enable the stage Particle Picking. Then you choose the panel
Manual Picking (Figure 10) where you can load tomograms and pick particles interactively.

PyTomGUI User guide

 10

Figure 10. Manual picking panel. Browse allows choosing an overview tomogram and Pick will open an
interactive display window for manually marking particles.

An interactive viewer allows marking features with the mouse in 2D xy-slices (Figure 11). The
3D coordinates can be stored in a file for further processing. The determined coordinates are
be saved in ascii (.txt) files.

Figure 11. Viewer for selecting particles. To enhance contrast a Gaussian Filter can be applied. The Size Selection
specifies the diameter of your particles (in pixels) and hence the displayed circles. Step Size specifies the number
of z-slices to be moved upon pressing the arrow buttons.

PyTom internally works with ParticleLists. These are xml files that not only contain particle
locations, but also their orientations, fine shifts and other useful information like filenames
and missing wedge. To convert the coordinate list into a particleList you choose the Create

PyTomGUI User guide

 11

Particle List panel and the Single mode, which allows you to create a particleList with a
coordinate file as input (Figure 12). Best stick with the suggested filenames for the (unbinned)
Subtomograms, which you will the reconstruct in the Subtomogram Analysis stage.

Figure 12. Converting a single coordinate list to a particleList.

Several coordinate lists and respective tomograms are combined into a single unified
particleList using the Batch option (Figure 13). The resulting particleList then contains
particles from different tomograms.

Figure 13. Converting coordinates to particleLists in Batch. Upon clicking the Refresh Tab, a dialog window will
open. In there you need to double-click on coordinate files to add them to the list of processed coordinate files
on the right. Pressing OK will invoke Figure 14.

PyTomGUI User guide

 12

Figure 14. Continuation of converting coordinates to particleLists in Batch.

4.2. Template matching

Open the Batch panel in Template Matching. Clicking Refresh Tab will open a dialog window,
which first asks for Tomograms (double clicking adds a tomogram to the selection!), then
template(s), and finally mask(s) to be used in the batch processing. In the tutorial data
folder, you find a folder templates with a ribosome template (21 Å voxel size,
corresponding to the 8x-downsampled overview reconstruction) and a corresponding
spherical mask.

You can specify the parameters in the window that appears after the dialog window (Figure
15). For example, Angle List is a list of predefined Euler angles to be probed. Its angular
increment and the total number of orientations characterize the respective lists (e.g.,
angles_12.85_7112.em samples 7112 orientations with 12.85 deg increment).

Figure 15. Template Matching in Batch mode. This window displays after tomograms, template(s) and mask(s)
have been specified in a dialog window. The Randomize Angles option randomized the particle orientations.

Templating matching correlates the tomograms with the template, confined to a mask. The
template has a much smaller dimension than the tomogram and the mask has to be of the
same dimension as the template. EM and mrc files are accepted as input. Maxima of the
resulting correlation volume specify likely particle localization. To determine coordinates of
maxima of the correlation volume and the corresponding orientations that yielded the

PyTomGUI User guide

 13

highest correlation scores the corresponding output files need to be analyzed using the
Extract Candidates box (Figure 16).

Figure 16. Determining coordinates and orientations of putative particles. Choose the Job File from the template
matching run in the dialog invoked by Browse, which fills File Name Particle List and Prefix (names of
subtomograms) automatically. In this case, coordinates and orientations for the top 300 hits will be stored (if
above a correlation coefficient of 0.2). Size particle is important to prevent particles from being picked twice.
This radius should correspond to the diameter of the particle.

The underlying extraction scripts requires the input parameters of the template matching run.
The Job, Score and Angles File are found in the folder
[myProject]/04_Particle_Picking/Template_Matching/cross_correl
ation/tomogram_xxx_WBP/. The Mask File is optional to restrict the search to specific
areas of interest.

The individual particleLists can be combined into a single one using a script from the
command line. Go to the directory, where you saved the particleLists (default:
[myProject]/04_Particle_Picking/Picked_Particles) and then type
combineParticleLists.py, which will display the help of this command. Use the
argument -f followed by the names of the particleLists (separated by commas, no spaces)
and -o to specify the output particleList (e.g., combineParticleLists.py -f
particleList_TM_tomogram_000_WBP.xml,particleList_TM_tomogram_
001_WBP.xml,particleList_TM_tomogram_002_WBP.xml,particleList_
TM_tomogram_003_WBP.xml -o
particleList_TM_tomogram_combined.xml).

5. Subtomogram Analysis
5.1. Reconstruct Subtomograms

First you need to reconstruct the subtomograms corresponding to the coordinates specified
in the respective particleList. After enabling the stage Subtomogram Analysis you select

PyTomGUI User guide

 14

Reconstruct Subtomograms, and therein Batch Reconstruction to reconstruct particles from a
number of particleLists. For the reconstruction you now make use of the CTF corrected
aligned projections created previously (Figure 17).

Figure 17. Batch reconstruction of subtomograms. The projections used for the reconstructions are in the third
column. A pop-up window provides you with different options. Until recently, the folder name for uncorrected
and CTF corrected aligned projections were the same – the last option refers to the CTF corrected one. In the
present PyTomGUI this is changed to make distinction easier ;). Bin factor recon is the downsampling factor of
the volume used for (manual) particle picking, in this case 8. Weighting is the weighting applied to the
projections prior to reconstruction; ‘1’ is the weighting that accounts for the angular sampling, ‘-1’ the ramp-
weighting and ‘0’ no weighting (if projections are already weighted).

5.2. Subtomogram alignment

Alignment of subtomograms to a common coordinate system, which then allows meaningful
averaging, relies on iterative algorithms. In PyTom, relatively simple quasi-expectation
maximation approaches iteratively optimize the correlation of particles with an aligned
average. In particular, the 3D rotational search is vast as three Euler angles need to be
sampled. PyTom supports two flavors of iterative subtomogram alignment: Fast Rotational
Matching (FRM) and real space alignment.

5.2.1. Fast Rotational Matching alignment

Subtomogram alignment by FRM allows exhaustive orientation sampling with high
computational speed. This is achieved through transformation of the Fourier transformed of
particles and reference to Spherical Harmonics space. The tab Align Subtomograms and the
selection FRM Alignment opens the interface for this subtomogram alignment option (Figure
18). A main strength of the FRM alignment is that subtomogram alignment can succeed
without an external reference. To this end we have randomized the orientations in the
particleList (Figure 15), which allows generating an initial reference that would typically be
some kind of sphere. Starting from this unbiased reference the iterative search should, at
least for large complexes, converge.

PyTomGUI User guide

 15

Figure 18. FRM-based subtomogram alignment and averaging. As Particle List choose the previously generated
one, for which you also reconstructed the subtomogram. The Mask can be generated from scratch by clicking
the Create button, which opens a dialog, or by choosing a pre-generated one (for example, generated in matlab
using tom/av3). The initial reference (Filename Average) can also be auto-generated from the (randomized)
particleList using the Average button. The spherical harmonics expansion is accelerated by restricting the
computation to those bands that are needed. The limits of those bands (‘quantum number’ l in spherical
harmonics). Broadly speaking, the internally used maximum l corresponds to √2𝜋 × 𝑘, where k denotes the
maximum Fourier frequency determined by FSC, or the bounds provided by Max and Min Order. Frequency is
the low-pass used in the first iteration (in pixels), Maximum iterations specifies the number of iterations for the
alignment, and Peak offset limits the shifts of subtomograms in the alignment procedure.

Above example applies the FRM alignment to membrane-associated ribosomes from the
tutorial data. In this case, the procedure converges from a sphere to a ribosomal structure
bound to a membrane (Figure 19).

Figure 19. intermediate stage of FRM alignment for hand-picked membrane-bound ribosomes. The figure shows
subsequent slices through the average after 10 FRM iterations (displayed with tom_dspcub in matlab/tom).

PyTomGUI User guide

 16

5.2.2. Real space alignment

Real space alignment tends to be more accurate because it can be focused on specific features
of the molecule of interest with a mask, but the orientation sampling takes much longer in
real space. As a consequence, only a limited range of orientations can be sampled in a single
iteration, decreasing the radius of converge compared to the FRM alignment. Thus, real space
alignment is a good option if the approximate orientations of the particles are known.

To use this approach, choose the tab Align Subtomograms with the specification GLocal (Gold-
standard Local alignment) (Figure 20). Required input are a Particle List (with good
approximations of orientations, for example from template matching or initial FRM
alignment), a Mask (spherical mask can also be created in GUI). An initial external reference
model can be provided or the average from the particleList will be used.

Figure 20. Real space alignment menu. The menu generates the command for the GLocal alignment. At this point
the GUI still requires you to specify a reference file – if you do want to use the average created from the data
from the beginning you can just delete the reference in the generated command (this ‘hack’ will soon be
obsolete …).

Results of the GLocal subtomogram alignment will be stored in [myProject]/
05_Subtomogram_Analysis/Alignment/GLocal/. For each iteration, the average,
the average filtered to the resolution according to FSC and the respective particleList will be
stored. When applied to the particles found by template matching the average rapidly
converges (Figure 21).

PyTomGUI User guide

 17

Figure 21. Subtomogram average resulting from template matching. The resolution rapidly converges to ~25 A.
In proximity to the primary ribosome the density of neighboring ribosomes is visible.

5.3. Classification

Part of PyTom are two distinct classification approaches: Constrained Principal Component
analysis-based classification (CPCA) and auto-focused classification. CPCA is designed to
classify previously aligned subtomograms according to main features in a user-defined mask.
Auto-focused classification aims to align subtomograms simultaneously with classification
and to automatically focus the classification on the most variable parts of the data.

5.3.1. Constrained principal component analysis

CPCA classification is accessible by choosing CPCA in the Classify Subtomograms panel. CPCA
classification comprises two major steps. The by far most time-consuming part is the
computation of the constrained correlation matrix; each possible particle pair is correlated,
considering the overlap of the particles in Fourier space. The result is a matrix, which is the
basis of the subsequent classification. This step is accessed by checking the Pairwise
Constrained Cross Correlation box (Figure 22).

Figure 22. Computing the cross correlation matrix. Particle List comprises the particles to be classified. A Mask
must be specified to target the correlation – and classification – to a specific area. A lowpass reduces noise
beyond the resolution of interest and Binning is recommended to accelerate computations whenever possible
(downscaling is performed in Fourier space).

PyTomGUI User guide

 18

Subsequently, the particles are classified based on the resulting matrix by checking the
Classify CPCA box (Figure 23). Firstly, the eigenvectors of the matrix are computed and the
projections of the particles to the selected set. K-means classification in this highly reduced
space then groups the data into a desired number of bins. The outcome of the classification
procedure are class averages and corresponding particle lists, which can be found in the pre-
generated folders.

Figure 23. CPCA-based k-means classification. Particle List is list of particles that has been used to compute the
correlation matrix. The Output Folder is then auto-generated to make sure it refers to the particleList you have
worked with. CCC File is the correlation matrix, which has been computed with above box (Figure 21). Number
of Eigenvectors specifies the principal components; here the four eigenvectors corresponding to the four highest
eigenvalues of the correlation matrix are used to project the data. Subsequently, k-means clustering with the
specified Number of Classes is carried out.

5.3.1. Autofocused-classification

Above CPCA classification requires accurately pre-aligned particles and typically prior
knowledge on which feature to classify for. Auto-focused classification is an attempt to
alleviate these requirements. It uses the FRM subtomogram alignment to align the particles
during the alignment. Furthermore, the procedure continuously monitors the variance
between the class averages, where the classification is focused on (hence the name: auto-
focused). Class assignments are based on a voting procedure: pairwise comparisons are made
for each investigated particle (i.e., the particle is compared to class 1 and 2, class 1 and 3,
class 2 and 3, and so forth) and the particle is assigned to the class that has most ‘wins’ in
these comparisons. You access this classification option through the tab Auto Focus in Classify
Subtomograms (Figure 24).

PyTomGUI User guide

 19

Figure 24. Auto-focused classification. Autofocused classification is performed on the specified Particle List. The
Focussed Mask allows to restrict the classification area; for example, membranes can be flexible and you may
want to exclude this area from the classification to rather focus on other structural features. The Alignment
Mask is required for the subtomogram alignment at each classification iteration. The Noise Percentage is an
estimation of particles that likely do not correspond to any meaningful class and should rather be assigned to a
‘junk’ basket (here 10%). The STD Threshold Diff Map determined the auto-focused mask: areas above this
threshold are used for the classification (here 0.4 times the standard deviation). The Particle Density threshold
focuses on particularly negative densities – typically classification targets densities that are present / absent in
the classes at this resolution.

This user guide is meant to serve as a first introduction into PyTom and its GUI. The aim is to
familiarize with the workflow and commands. Experienced users will eventually use
commands from the command line, making use of the pre-defined folder structure of the GUI
and in particular of its batch functions.

Have Fun!

